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Abstract

Margin classifiers, such as Support Vector Machine, are usually crit-
ical in the high-stakes decision domains. In recent years, differential
privacy has been widely employed in margin classifiers to protect
user privacy. However, incorporating differential privacy into margin
classifiers might adversely cause the fairness issue in the sense that
differentially private margin classifiers have significantly different true
positive rates on different groups that are determined by sensitive
attributes (e.g., race). In order to address this issue, we are moti-
vated to identify the factor that dominates the fairness of differentially
private margin classifiers based on well-designed experiments and fur-
ther analysis. We first conduct an empirical study on three classical
margin classifiers learned via three representative differentially pri-
vate empirical risk minimization algorithms, respectively. The empirical
result shows that the fairness of differentially private margin classi-
fiers strongly depends on the fairness of their non-private versions.
We then analyze how differential privacy impacts the fairness of mar-
gin classifiers and confirm the empirical study results. In a general
sense, our study shows that when non-private margin classifiers are fair,
the fairness of their differentially private counterparts can be ensured.

Keywords: Margin Classifiers, Differential Privacy, Fairness, Empirical Risk
Minimization
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1 Introduction

Margin classifiers are playing an important role in the high-stakes decision
domains (e.g., credit assessment) [1, 2]. Recently, to protect user privacy
when training margin classifiers on sensitive data, a number of differentially
private empirical risk minimization (ERM) algorithms have been proposed [3–
8]. Meanwhile, as an important social concern about machine learning,
algorithmic fairness is receiving increasing attention from both public and
academia [9, 10]. Among various machine learning models, the fairness of mar-
gin classifiers receives significant attention [11–15] for their wide application
in high-stakes domains protected by anti-discrimination regulations.

However, previous studies [16, 17] showed that the differentially private
ERM algorithms could make machine learning models unfairly treat different
groups, such as recognizing black faces and white faces with different accuracy.
Here, their studies are mainly empirical and lack an analysis of how differential
privacy impacts the fairness of their studied models. As a result, we still did not
know the dominant factor on the fairness of the differentially private machine
learning models. Identifying the dominant factor would help find a correct way
to ensure the fairness of differentially private margin classifiers.

In this paper, we show that the fairness of non-private margin classifiers
dominates the fairness of corresponding differentially private margin classifiers
based on well-designed experiments and further analysis. We first empirically
evaluate the impact of three representative differentially private ERM algo-
rithms [3–5] on the fairness of three classical margin classifiers: Linear support
vector machine (SVM), Kernel SVM, and logistic regression (LR). Because in
most high-stakes domains, the accuracy of the ‘positive’ label is more impor-
tant than that of the ‘negative’ label [12, 18], we use equal opportunity [12],
which requires that different groups should have the same true positive rate
(TPR), as the fairness notion. By testing three datasets widely used in the
algorithmic fairness field, we find that the fairness of differentially private mar-
gin classifiers strongly depends on the fairness of their non-private versions.
In that sense, when a non-private margin classifier has almost the same TPR
on different groups, its differentially private version also has almost the same
TPR on these groups. Furthermore, when a non-private margin classifier has a
significant TPR gap between two groups, differential privacy will amplify this
TPR gap.

We confirm the empirical results through a theoretical analysis of how dif-
ferential privacy impacts the fairness of margin classifiers. Concretely, we reveal
that the main reason for significant TPR gaps in differentially private margin
classifiers is that ‘positive’ data samples of different groups have significantly
different margin distributions in their non-private versions, which is implied by
TPR gaps. By contrast, when a non-private margin classifier has similar TPR
on different groups, the ‘positive’ data samples from different groups will have
similar margin distributions. Consequently, the negative impact brought by
differential privacy can be largely ignored, even eliminated. We also show that
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our analysis results can be extended to other accuracy-based group fairness
notions (e.g., equal odds [12]).

In summary, we show that if non-private margin classifiers are fair with
negligible TPR gaps, the fairness of their differentially private counterparts can
be ensured. As is shown in Section 5.3, when we improve the fairness of non-
private margin classifiers with a pre-processing method [11], the TPR gaps of
differentially private margin classifiers are close to and even lower than those
of non-private margin classifiers.

2 Related Work

Algorithmic Fairness. Chouldechova et al. [9] presented an overview of cur-
rent studies on algorithmic fairness. Dwork et al. [19] proposed the notion of
individual fairness. However, because the similarity of individuals is hard to
measure, a series of group fairness notions [12, 19, 20] have been proposed.
Based on these fairness notions, several studies proposed the related algorithms
to train fair classifiers [11–14]. All of these studies took margin classifiers as
typical cases to verify the effectiveness of their algorithms.
Differential Privacy. Differential privacy has become a de facto standard to
protect user privacy of machine learning models. Since Chaudhuri et al. [21]
created a novel sensitivity analysis method for convex and continuous loss
functions, many differentially private ERM algorithms have been developed to
achieve a better privacy-utility trade-off [6, 7, 22, 23], to make differentially
private ERM algorithms more usable [5, 24] or to make a non-convex opti-
mization process differentially private [3, 25]. In addition, Jagielski et al. [26]
applied differential privacy to protect the sensitive attribute (e.g., gender) of
data samples when training a fair classifier.
Differential Privacy and Algorithmic Fairness. Cummings et al. [27]
showed that perfect fairness and differential privacy are incompatible under
non-trivial accuracy. Bagdasaryan et al. [16] empirically revealed that a differ-
entially private stochastic gradient descent algorithm has a disparate impact
on the accuracy of different groups. Motivated by the above findings, some
related algorithms [28–32] have been proposed to balance privacy protection
and fairness on the classification problem, the selection problem, etc. However,
there still lacks a comprehensive study on how differential privacy impacts
the fairness of margin classifiers, which is critical to design differentially pri-
vate and fair margin classifiers. Compared with previous studies, our study
covers a wider spectrum of differentially private ERM algorithms. What is
more, beyond the empirical study, we conduct a theoretical analysis of how
differential privacy impacts the fairness of margin classifiers.

3 Preliminaries

To present the study results clearly, we list the symbols involved in this paper
in Table 1.
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Table 1: Notations involved in this paper

Symbol Description
D Dataset
ℓ Loss Function
L Lipschitz constant
η Learning rate
k Batch size
T Iteration number
Λ Coefficient of L2-regularization
n Size of training dataset
ϵ, δ Privacy parameters
θ Model parameters
p Feature dimension

λ, α Deviation parameters
γ The upper bound of gradients

3.1 Margin Classifier

Definition 1 Geometric margin [33]. The geometric margin ρh(x⃗) of a linear
classifier h : x⃗ → θT · x⃗ at a data sample x⃗ is its Euclidean distance to the hyperplane
whose normal vector is θ:

ρh(x⃗) =
|θT·x⃗|
∥θ∥2

Margin classifier [34]. Margin classifiers learn a model by optimizing
a loss function that takes margins as inputs (e.g., maximizing the minimum
margin). That is, the loss function of any margin classifier can be represented
as a composite function of the margin function and a margin loss function
ϕ(ρh(x⃗ )) : Rp → R+, where p is the dimension of input data.

3.2 Differentially Private Empirical Risk Minimization
Algorithms

We first introduce the definition of neighboring datasets: D and D
′ ∈ Dn are

neighboring datasets if D
′
and D differs in one data sample. We then introduce

the definition of (ϵ, δ)-differential privacy as follows.

Definition 2 (ϵ, δ)-differentially privacy [35]. For a random mechanism M whose
input is D ∈ Dn and output is r ∈ R, we say M is (ϵ, δ)-differentially private if for

any subset S ⊆ R, Pr(M(D) ∈ S) ≤ eϵ · Pr(M(D
′
) ∈ S) + δ, where ϵ is the privacy

budget, a tunable parameter on the privacy-utility trade-off.

The main idea of differential privacy is to bound the influence of each data
sample on the output to prevent attackers from inferring any information about
one single data sample from the output. A typical way to satisfy the definition
of differential privacy is by adding random noise sampled from a predefined
distribution to the computing process. If δ is 0, we say M is ϵ-differentially
private.
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We can design differentially private ERM algorithms according to the fol-
lowing three paradigms: (1) Objective perturbation (adding random noise to
loss functions); (2) Gradient perturbation (adding random noise to gradients);
(3) Output perturbation (adding random noise to the final model parame-
ters). To comprehensively study the relationship between differential privacy
and fairness of margin classifiers, we test three differentially private ERM
algorithms, each of which follows one or two of the above three paradigms.

Approximate Minimal Perturbation algorithm (AMP) [4] combines
the objective perturbation and the output perturbation paradigms. It thus
divides the total privacy budget into two parts (i.e., the noise of objective
perturbation and the noise of output perturbation). Note that even though
AMP is a hybrid method, more than 99% of the privacy budget should be
allocated to the objective perturbation phase as they recommend.

Differentially Private Stochastic Gradient Descent algorithm
(DPSGD) [3] follows the gradient perturbation paradigm. It adds noise to the
clipped gradients. DPSGD can be applied to train non-convex models because
it has no assumption on the loss functions.

Private convex permutation-based Stochastic Gradient Descent
algorithm (PSGD) [5] follows the output perturbation paradigm. The goal
of PSGD is to help incorporate differential privacy into existed machine learn-
ing systems without modifying the original system. It adds noise to the final
model parameters based on the sensitivity analysis on convex and continuous
loss functions and the stochastic gradient descent process.

Despite adding the noise at different positions, all of the above differentially
private ERM algorithms provide utility guarantees for convex models, which
bound the difference between the losses of private and non-private models.
They guarantee the utility by bounding the Euclidean distance between the
private model parameters θpriv and non-private model parameters θ∗. As a
result, we define (λ, α)-deviation to quantify the deviation of model parameters
led by differential privacy noise.

Definition 3 (λ, α)-deviation. We say a differentially private ERM algorithm is
(λ, α)-deviate if it can guarantee that when trained from the same dataset, with the
probability at least 1-α, the L2 distance between private model parameters θpriv and
non-private model parameters θ∗ is less than a given value λ. That is:

Pr(
∥∥θpriv − θ∗

∥∥
2
< λ) ≥ 1− α

In Definition 3, α bounds the probability that the L2 distance between
the private model and the original model is higher than or equal to λ. We
show the the deviation properties of the above three differentially private ERM
algorithms in Lemma 1, Lemma 2 and Lemma 3.
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Lemma 1 AMP follows (nγΛ + (
√

2p log 2
α )(

4L
Λϵ3

(1 +
√

2 log 1
δ1
) + nγ

Λϵ2
(1 +√

2 log 1
δ2
)),α)-deviation.

Lemma 2 PSGD follows (
2p ln(p/α)kTLη

nϵ ,α)-deviation.

Lemma 3 When applying DPSGD to optimize a ∆-strongly convex and L2 -
Lipchitz continuous loss function, if we set learning rate as 1

∆t , DPSGD follows

(
4(L2+pσ2)

∆2Tα
,α)-deviation.

The proofs of the above lemmas are shown in Appendix A with the
pseudocodes of three differentially private learning algorithms.

3.3 Equal Opportunity

Let D = {(x⃗1 , a1 , y1 ), · · · ,(x⃗n , an , yn)} be a dataset that consists of n data
samples from an unknown distribution over (X ,A)×Y , where Y = {+1 ,−1}
is the set of labels, A is the set of sensitive attributes (e.g., gender, race) and
X is the set of other features in an input space. In this paper, we use equal
opportunity [12], which requires that different groups should have the same
true positive rate (TPR), as the fairness notion in our study.

Cummings et al. [27] has shown that perfect fairness and differential privacy
are incompatible under non-trivial accuracy. We thus use ρ-True Positive Rate
Disparity to measure the degree of fairness of a classifier.

Definition 4 ρ-True Positive Rate Disparity [36]. For any ai , aj (i ̸= j ) ∈ A
and a classifier hθ, we say hθ satisfies ρ-True Positive Rate Disparity if and only
if |Pr{hθ(x⃗ i , ai ) = +1 |yi = +1} - Pr{hθ(x⃗ j , aj ) = +1 |yj = +1}| ≤ ρ. Here ρ is the
maximum TPR difference among all groups.

4 Empirical Study

In this section, we evaluate the impact of differential privacy on the fairness
of margin classifiers by applying AMP, DPSGD, PSGD to train three classical
margin classifiers: Linear SVM, Kernel SVM and LR, respectively. We try to
answer the following research questions: Are differentially private ERM
algorithms bound to aggravate the TPR gaps of margin classifiers?
If not, which factor dominates the aggravation of the TPR gaps?
The answers to these questions would help find a correct way to ensure the
fairness of differentially private margin classifiers.

4.1 Experiment Setup

Datesets. We transform all data samples to one-hot encoded form and
shuffle them before the training process. Then we take the first 80%
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Table 2: Overview of datasets.
DataSet #Sample Sensitive Attribute Positive Label

Compas 5,915 Race No Recidivism in Two Years

Adult 45,220 Gender Income Higher than 50k Dollars

Default 30,000 Gender No Default Payment

as the training dataset and the rest 20% as the testing dataset. There
are six datasets (Compas1, Adult [37], Default [37], German [37],

Student [37], Arrhythmia [37]) that are widely used in the algorith-
mic fairness field. Considering the size of datasets (larger than 1,000), we
employ three datasets (Compas, Adult, Default) in our empirical study. The
overview of these three datasets is shown in Table 2. (1) Compas dataset
contains 7,214 data samples. The binary label indicates whether an offender
recidivates within two years after the screening. We set ‘No Recidivism in Two
Years’ as the ‘positive’ label and Race as the sensitive attribute. After filtering
the data samples with null attributes and selecting the data samples whose
races are African-American (black) or Caucasian (white), we obtain 5,915 data
samples. (2) Adult dataset contains 45,220 data samples. The binary label
indicates whether the income of one citizen is higher than 50k dollars. We set
‘Income Higher than 50k Dollars’ as the ‘positive’ label and Gender as the
sensitive attribute. (3) Default dataset contains 30,000 data samples. The
binary label indicates whether one user has a default payment. We set ‘No
Default Payment’ as the ‘positive’ label and Gender as the sensitive attribute.
Note that even with large variances, the results of the rest three datasets give
the same answer to the research questions with three employed datasets. We
discuss them in Appendix B.

Algorithm Implementation and Hyperparameter Configuration. We
implement AMP, DPSGD, PSGD based on the open-source code2 released by
Iyengar et al. [4]. All of three algorithms have at least four hyperparameters.
To comprehensively study the relationship between differential privacy and
fairness of margin classifiers, we conduct a grid search procedure to find the
best hyperparameter configuration, which means that under the hyperparam-
eter configuration, private models acquire the highest average test accuracy
given a privacy budget. In addition, we independently train ten models for
each hyperparameter configuration and average the TPR gaps between groups
of these ten models as the final result. We also plot the error bars of the test
results to show the statistical significance of our results. We list all potential
values of hyperparameters in Table 3.

Privacy Parameters. To comprehensively study the impact of differential
privacy on the fairness of margin classifiers, we test eight ϵ values (from 1
to 8), which covers most privacy budget values used in practice. In addition,
following the settings of previous works [4, 5], we set another privacy parameter

1https://github.com/propublica/Compas-analysis
2https://github.com/sunblaze-ucb/dpml-benchmark
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Table 3: Potential hyperparameter values for the grid search procedure.

Hyperparameter Potential Values
Λ (regularization factor) 0, 0.001, 0.01, 0.05

η (learning rate) 0.001, 0.01, 0.1, 1, 10
T (iteration number) 5, 10, 100, 500, 1000

f (output budget fraction of AMP) 0.001, 0.01, 0.1, 0.5
f1 (privacy budget fraction of AMP) 0.9, 0.95, 0.98, 0.99

L (clipping threshold) 0, 0.05, 0.1, 1, 10

Table 4: Potential Privacy parameters.

Privacy Parameter Potential Values
ϵ 1, 2, 3, 4, 5, 6, 7, 8
δ 1

n2
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Fig. 1: TPR gaps of non-private and differentially private Linear SVM models.

δ as 1
n2 , where n is the size of the training dataset. The potential values of

privacy parameters are shown in Table 4.

Sample Clipping. All three differentially private ERM algorithms require
that the loss functions should be L2-Lipschitz continuous [4]. We achieve it by
bounding the L2 norm of each data sample. Before the training process, we
clip the feature vector of each data sample (x⃗i, ai) to (x⃗i, ai)·min(1, L

∥(x⃗i,ai)∥2
).

4.2 Experimental Results

Linear Support Vector Machine. We obtain the non-private baselines by
training L2 regularized Linear Huber SVM models [38]. Then we train differ-
entially private Linear SVM models via AMP, DPSGD and PSGD on same
training datasets.

As is shown in Figure 1, the average TPR gaps of all private models trained
on Compas and Adult datasets are larger than those of the non-private models.
In contrast, the average TPR gaps of all private models trained on Default

dataset are close to that of the non-private model. The TPR gap between the
white samples and black samples of the non-private model trained on Compas
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Fig. 2: TPR gaps of non-private and differentially private Kernel SVM mod-
els, where dim and std are the parameters of kernel function approximation
method.
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Fig. 3: TPR gaps of non-private and differentially private LR models.

dataset is about 0.117 (more than 19 times of Default); the TPR gaps between
the male samples and female samples of the non-private models trained on
Adult and Default datasets are about 0.072 (12 times of Default), 0.006,
respectively.

Kernel Support Vector Machine. We implement the non-private Kernel
SVM and its differentially private versions through a Fourier transform-
based function approximation method proposed by Rahimi et al. [39]. This
method uses random cosine functions to approximate the kernel functions that
project the original features to a high-dimension target space. Therefore, two
additional parameters are involved in the Kernel SVM implementation: the
dimension number of the target space (dim), the standard variance of random
cosine functions (std). We approximate the Gaussian kernel function [33] here
and use a grid search procedure to determine the values of these two param-
eters. Then we train Linear SVM models on the projected high-dimension
features.

As is shown in Figure 2, the private models trained on Compas and Adult

datasets all have larger average TPR gaps than the non-private models. Note
that the TPR gaps of non-private models trained on Compas and Adult

datasets are about 19 and 12 times more than that of Default dataset. While
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Table 5: Overview of imbalanced datasets.

DataSet #Sample Size ratio of the majority group to the minority group
Compas 4,245 5:1 (Black: White)
Adult 33,579 10:1 (Male: Female)
Default 19,924 10:1 (Female: Male)

in Default dataset, the average TPR gaps of private models are similar to that
of the non-private models. Meanwhile, as the privacy budget changes, the size
of TPR gaps fluctuates up and down, which shows that the TPR gap changes
are accidental errors introduced by the randomness of noise sampling.

Logistic Regression. We obtain the non-private baseline by training a L2

regularized LR model on the same training datasets with private models. As is
shown in Figure 3, the private models trained on Compas and Adult datasets
all have larger average TPR gaps than the non-private models. By contrast,
when the TPR gap in the non-private model is small (0.014 in Default dataset,
about 1/11 and 1/5 of Compas and Adult datasets), the TPR gaps in private
models are almost the same as that of the non-private model.

Insights. By analyzing the experimental results of three classical margin clas-
sifiers learned via three differentially private ERM algorithms over three widely
used datasets, we can conclude that differentially private ERM algorithms are
not bound to have a disparate impact on the TPR of different groups. That is,
when the TPR gaps of non-private models are small enough (such as 0.006 in
Default dataset by Linear SVM), differential privacy will not aggravate the
TPR gaps of margin classifiers. On the other hand, when non-private models
have significant TPR gaps between groups (such as 0.117 in Compas dataset
and 0.072 in Adult dataset by Linear SVM), all differentially private ERM
algorithms amplify the TPR gaps. In addition, in Compas dataset, the num-
ber of black samples is about 1.5 times that of white samples, but the TPR
of black samples drops much more than white samples in private models. The
result shows that differential privacy only amplifies the bias in the dataset
rather than discriminates the minority group of the dataset. We will further
justify this claim in Section 4.3.

4.3 Impact of Data Imbalance

Bagdasaryan et al. [16] stated that differential privacy noise would cause
less accuracy loss on majority groups and more accuracy loss on minority
groups in differentially private neural network models. In order to test whether
this claim is applicable in margin classifiers, we subsample the minority group
of three datasets studied in Section 4 to construct imbalanced datasets. The
details of constructed imbalanced datasets are shown in Table 5. Note that we
set the size ratio of Compas dataset as 5:1 because it has much fewer samples
than the other two datasets. Thus the testing results will have large variances
if we set it as 10:1. We then train non-private and differentially private margin
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Fig. 4: TPR gaps of non-private and differentially private SVM models trained
on imbalanced datasets.
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Fig. 5: TPR gaps of non-private and differentially private LR models trained
on imbalanced datasets.

classifiers over these imbalanced datasets with the same grid search procedure
used in Section 4. The testing results are shown in Figure 4 and Figure 5. In
Compas, where the number of black samples is five times that of white samples,
when non-private classifiers have significantly higher TPR on white samples,
the differential privacy still enlarges the TPR gap between white samples and
black samples. On the other hand, in Default, even though the number of
female samples is ten times that of male samples, when non-private classi-
fiers have similar TPR on different groups, differential privacy has a similar
impact on these groups. The above results show that data imbalance has little
impact on the accuracy loss of differentially private ERM algorithms caused
on different groups.

5 Analysis of Impact Mechanism

In this section, we analyze how differentially private ERM algorithms impact
the TPR gaps of margin classifiers. We synthesize a two-dimensional dataset
to show the intuition behind our analysis in Figure 6. For clarity purposes, we
only illustrate the ‘positive’ samples. As is shown in Figure 6, in the non-private
model, Group1 has a higher TPR than Group2 (i.e., Group1 has more true
positive (TP) samples and fewer false negative (FN) samples than Group2).
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Original Hyperplane

The FN samples of Group1 
are classified as positive by 
the private hyperplane

Private Hyperplane

The TP samples of Group2 
are classified as  negative 
by the private hyperplane

Fig. 6: An overview of the analysis of Section 5. Each point represents a data
sample. The color and shape of one point indicate the group and type the data
sample belongs to.

The TPR gap between Group1 and Group2 implies different margin distribu-
tions of their TP and FN data samples, i.e., the margins of TP data samples of
Group2 mainly distribute on lower values (closer to the original hyperplane),
while the margins of FN data samples of Group1 mainly distribute on lower
values (Section 5.1). When the private hyperplane deviates from the original
hyperplane, more TP samples of Group2 are misclassified as negative and more
FN samples of Group1 are correctly classified as positive (Section 5.2). As a
result, the TPR gap between these two groups is aggravated (Section 5.3).

5.1 Bridging TPR Gap and Margin Gap

In this section, we show that if one group has a significantly higher TPR than
another group in a non-private margin classifier, the margins of the group’s
TP data samples will distribute on higher values, while the margins of the
group’s FN data samples will distribute on lower values. We first analyze the
correlation between the margin and the loss of one data sample. The loss
functions of standard linear SVM [33] and LR [33] are:

lossSVM (θ, x⃗i, yi) =

{
max(0, 1− θT x⃗i) yi = +1

max(0, 1 + θT x⃗i) yi = −1

lossLR(θ,x⃗ i , yi) =

 log(1 + e−(θT x⃗i)) yi = +1

log(1 +
1

e−(θT x⃗i)
) yi = −1

where |θT x⃗i| = marginx⃗i
∗ ∥θ∥2 according to Definition 1. Without loss of

generality, we discuss the situation where yi = +1 here. By the definitions of
the above loss functions, when a data sample x⃗i is correctly classified (i.e.,
θT x⃗i > 0 ), a larger margin implies a smaller value of the loss function. Con-
versely, when x⃗i is wrongly classified (i.e., θT x⃗i < 0), a smaller margin implies
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Fig. 7: Margin distribution of TP samples and FN samples of Compas dataset
on non-private Linear SVM and LR models.

a smaller value of |θT x⃗i| (i.e., −θT x⃗i), thus a smaller value of the loss function.
Consequently, if the average loss of one group (refer to as ga) is lower than
another group (refer to as gb), at least one of the following two situations will
happen: (1) The correctly classified data samples of ga have a larger average
margin than correctly classified data samples of gb. (2) The wrongly classified
data samples of ga have a smaller average margin than wrongly classified data
samples of gb. An concrete example of the above ga and gb is Group 1 and
Group 2 in Figure 6.

If one group has a higher TPR than another one, its ‘positive’ data samples
should have a lower average loss than the other one. Therefore, the TPR gap
between groups inevitably implies the margin distribution difference between
their TP data samples (situation (1)) or their FN data samples (situation (2)),
even both simultaneously. On the other hand, if two groups have similar TPR,
their ‘positive’ samples should have a similar loss and thus have a similar
margin distribution.

To further verify the above analysis results, we plot the frequency his-
tograms of data samples’ margins to show the margin distributions of Compas
and Default datasets in Figure 7 and 8. Because the only difference between
Linear SVM and Kernel SVM is that the former is trained on original features
and the latter is trained on projected high-dimension features, the results of
Linear SVM can be generalized to Kernel SVM. In Linear SVM and LR mod-
els trained on Compas dataset, the TPR gaps between white samples and black
samples are about 0.117 and 0.157, respectively. Consequently, the margins of
TP black samples mainly distribute on lower values than the white ones, while
the margins of FN white samples mainly distribute on the lower values than
the black ones. By contrast, in Default dataset, where the TPR gaps of two
non-private margin classifiers are both less than 0.015, the margin distributions
of different groups’ TP and FN samples are very similar.

5.2 Impact of Margin Gap

We then show that when the private hyperplane deviates from the original
hyperplane, the TP samples with smaller margins are more likely to be wrongly
classified as negative, and the FN samples with smaller margins are more likely
to be correctly classified as positive.
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Fig. 8: Margin distribution of TP samples and FN samples of Default dataset
on non-private Linear SVM and LR models.

Theorem 1 Let m denote the margin of one data sample x⃗ to the original hyperplane
whose normal vector is θ∗. If m is greater than λL

∥θ∗∥2
, then with the probability less

than or equal to α, the private model θpriv trained by a differentially private ERM
algorithm that is (λ, α)-deviate makes a different prediction with the original model
on x⃗, i.e.,

Pr((θ∗T · x⃗)(θTpriv · x⃗) < 0) < α

where L is the upper bound of data samples’ L2 norm.

Proof

(θ∗T · x⃗)(θTpriv · x⃗) = (θ∗T · x⃗)((θ∗ + θpriv − θ∗)T · x⃗)

= (θ∗T · x⃗)(θ∗T · x⃗+ (θpriv − θ∗)T · x⃗)

According to Cauchy-Schwarz inequality,

|(θpriv − θ∗)T · x⃗| ≤
∥∥θpriv − θ∗

∥∥
2
· ∥x⃗∥2 < λL

As we stated in Section 4.1, to ensure the loss functions are L2 -Lipchitz
continuous, the L2 norm of all data samples are not larger than L. Therefore,

∥x⃗∥2 ≤ L

Meanwhile, according to the deviation property of differentially private learning
algorithms, with the probability at least 1-α,∥∥θpriv − θ∗

∥∥
2
< λ

According to the definition of margin, ρh(x⃗) ≥ λL
∥θ∗∥2

implies that |θ∗T · x⃗| ≥ λL.

Therefore, the sign of (θ∗T · x⃗+ (θpriv − θ∗)T · x⃗) would be consistent with the sign

of (θ∗T · x⃗) with probability at least 1-α. Thus,

Pr((θ∗T · x⃗)(θTpriv · x⃗) < 0) < α

□

According to Definition 3 and deviation properties of three differentially
private ERM algorithms identified in Section 3.2, a smaller deviation λ implies
a higher α. Meanwhile, in Theorem 1, a smaller m implies a smaller λ. Con-
sequently, the bound of Theorem 1 shows that a differentially private margin
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classifier θpriv is more likely to make a different prediction with the non-private
model on one data sample that has a lower m. As is shown in Figure 6, when
the hyperplane deviates from its original position, the data samples that are
closer to the original hyperplane are more likely to be classified as different
classes. When a private model makes different predictions with the non-private
model on them, TP samples suffer accuracy loss, while FN samples gain accu-
racy. Therefore, Theorem 1 shows that the hyperplane deviation led by the
differential privacy noise causes more accuracy losses to the TP data samples
that are closer to the original hyperplane, and more accuracy gains to the FN
data samples that are closer to the original hyperplane.

5.3 Deep Analysis of Empirical Results

With the analysis results from Section 5.1 and Section 5.2, we analyze the
empirical results from Section 4 as follows.

According to Section 5.1, the TPR gap between groups implies different
margin distributions of these groups. Concretely, the group with a higher TPR
would have more TP data samples whose margins distribute on high values
and more FN data samples whose margins distribute on low values. Meanwhile,
as the bound of Theorem 1 shows, when the original hyperplane is deviated
by differential privacy noise, the group with a higher TPR will suffer less
accuracy loss on TP data samples and gain more accuracy on FN data samples.
Therefore, the significant TPR gaps of non-private margin classifiers trained on
Compas and Adult datasets are amplified in their differentially private versions.

By contrast, if a non-private margin classifier has almost the same TPR on
different groups, the ‘positive’ data samples of these groups will have similar
margin distributions. Then the TP and FN data samples of different groups
will obtain similar bounds in Theorem 1. As a result, the differentially private
version of the margin classifier has almost the same TPR on these groups, too.

To further verify the effectiveness of the above results, we use a pre-
processing method proposed by Donini et al. [11] to mitigate the biases that
exist in Compas and Adult datasets. Then we train non-private and private
Linear SVM and LR models on debiased datasets. The TPR gap testing results
are shown in Figure 9. When we reduce the TPR gaps of the non-private mod-
els trained on Compas dataset from 0.117, 0.157 to 0.050, 0.050, the negative
impact brought by differential privacy is largely mitigated, even eliminated.
In Adult dataset, when we reduce the TPR gaps of non-private models from
0.072, 0.071 to 0.024, 0.028, the TPR gaps of private models are very similar
to those of non-private models. These results further show that the fairness
of differentially private margin classifiers strongly depends on the fairness of
their non-private versions.

6 Discussion and Future Work

Non-convex models. Currently, domains that are protected by anti-
discrimination laws are mainly high-stakes, such as credit assessment and
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Fig. 9: TPR gaps of non-private and private margin classifiers trained on
Compas and Adult datasets that have been pre-processed by the method pro-
posed by [11].

criminal justice. Deep learning models would still be far from being widely
deployed in these domains due to their lack of interpretability and robust-
ness [40–42]. Therefore, we focus on the fairness of differentially private margin
classifiers in this paper. Besides, current differentially private ERM algorithms
for non-convex models still lack rigorous utility guarantees. As a result, we put
identifying the deviation properties of non-convex models as our future work.

Extending our results to other accuracy-based fairness notions. We
have shown that the TPR gap of a non-private margin classifier implies the
margin distribution difference between TP samples or FN samples of different
groups. According to the qualitative analysis on the loss functions of SVM and
LR, we can obtain the same result with the TPR gap when it comes to the true
negative rate gap or the total accuracy gap. That is, a true negative rate gap or
a total accuracy gap between two groups would also imply the different margin
distributions of corresponding data samples. As Theorem 1 only assumes the
margin of a data sample, the results of our paper can be extended to other
accuracy-based fairness notions, including equal odds [12], which requires that
the different groups should have the same true negative rate and true positive
rate, and accuracy parity [18], which requires the different groups should have
the same accuracy.

Future work. In the future, we will quantitatively analyze the correlation
between the TPR gap and margin distribution difference among groups in the
non-private margin classifier to understand the impact of differential privacy
on the fairness of margin classifiers more deeply.

7 Conclusion

In this paper, we study the dominant factor on the fairness of differentially
private margin classifiers. Through conducting a well-designed empirical study
and analyzing how differential privacy impacts the fairness of margin classifiers,
we show that the fairness of differentially private margin classifiers strongly
depends on the fairness of their non-private counterparts. To summarize, we
argue that if non-private margin classifiers are fair with negligible TPR gaps,
the fairness of their differentially private versions can be ensured.
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A Deviation Properties of AMP, PSGD,
DPSGD

In this section, we first identify the deviation properties of AMP, PSGD and
DPSGD. Then we show the detailed proof of Theorem 1.

Algorithm 1 Approximate Minima Perturbation [4]

Input: Data set: D = {d1 , · · · , dn}; loss function: ℓ(θ; di) with L2 -Lipschitz
constant L, is convex in θ, has a continous Hessian, and is β-smooth for all
θ ∈ Rp and all di ; Hessian rank bound parameter: r ; privacy parameters:
(ϵ, δ); gradient norm bound: γ.

1: Set ϵ1 , ϵ2 , ϵ3 , δ1 , δ2 > 0 such that ϵ = ϵ1 + ϵ2 , δ = δ1 + δ2 , and
0 < ϵ1 − ϵ3 < 1

2: Set Λ ≥ rβ
ϵ1−ϵ3

3: b1 ∼ N (0 , σ2
1 Ip×p), where σ1 =

( 2L
n )(1+

√
2 log 1

δ1
)

ϵ3

4: Let Lpriv (θ; D) = 1
n

∑n
i=1 ℓ(θ; di) +

Λ
2n ∥θ∥

2
2 + bT1 θ

5: θapprox ← θ such that ∥∇Lpriv(θ,D)∥2≤ γ

6: b2 ∼ N (0 , σ2
2 Ip×p), where σ2 =

( nγ
Λ )(1+

√
2 log 1

δ2
)

ϵ2
7: Output θout = θapprox + b2

The pseudocodes of AMP are shown in Algorithm 1. According to the
design of AMP, we identify its deviation property as follows.

Proof of Lemma 1. AMP follows (nγΛ + (
√

2p log 2
α )(

4L
Λϵ3

(1 +
√

2 log 1
δ1
) +

nγ
Λϵ2

(1 +
√

2 log 1
δ2
)),α)-deviation.

Proof The utility guarantee of AMP contains two parts. First, it bounds the distance
between optimal model parameters θapprox under private loss function and optimal
model parameters θ∗ under non-private loss function. Second, it bounds the distance

between private output θout and θapprox. The first bound is
2n

∥∥∥b⃗1∥∥∥
2

Λ (see inequality
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10 of [4]). The second bound is nγ
Λ +

∥∥∥b⃗2∥∥∥
2
(see inequality 5 of [4]). Therefore, the

total bound of the deviation of model parameters is
n(γ+2

∥∥∥b⃗1∥∥∥
2
)

Λ +
∥∥∥b⃗2∥∥∥

2
, where b⃗1

and b⃗2 are distributed as N (0, σ2
1Ip×p),N (0, σ2

2Ip×p), here σ1 =
2L
n (1+

√
2 log 1

δ1
)

ϵ3
,

σ2=
nγ
Λ (1+

√
2 log 1

δ2
)

ϵ2
.

According to Lemma 2 in [43]: with probability ≥ 1− α
2 ,∥∥∥b⃗s∥∥∥

2
≤ σs

√
2p log 2

α ,

AMP thus follows (nγΛ + (
√

2p log 2
α )(

4L
Λϵ3

(1 +
√

2 log 1
δ1
) + nγ

Λϵ2
(1 +

√
2 log 1

δ2
)),α)-

deviation. □

Algorithm 2 Differentially Private Permutation-based Stochastic Gradient
Descent [5]

Input: Data set D = {d1 , · · · , dn}, loss function: ℓ(θ; di) with L2 -Lipschitz
constant L, privacy parameters: (ϵ, δ), number of iterations: T , batch size:
k , constant learning rate: η.

1: θ1 = 0p

2: Let τ be a random permutation of [n]
3: for t = 1 to T − 1 do
4: for b = 1 to n

k do
5: Let s1 = dτ(bk), · · · , sk = dτ(b(k+1)−1)

6: θ ← θ − η(1k
∑k

i=1 ∇ℓ(θ; si))
7: end for
8: end for
9: σ2 ← 8T2L2η2 log( 2

δ )

k2 ϵ2

10: b ∼ N (0 , σ2 Ip×p)
11: Output θpriv =θ + b

We show the pseudocodes of PSGD in Algorithm 2. We then identify the
deviation property of PSGD.

Proof of Lemma 2. PSGD follows ( 2p ln(p/α)kTLη
nϵ ,α)-deviation.

Proof The sensitivity of PSGD is 2kTLη
n (see Corollary 1 in [5]). As the noise is

directly added on the final model, the Euclidean distance between private model
and non-private model is the L2 norm of the noise, which is distributed as Gamma
distribution Γ(p, 2kTLη

nϵ ). According to Theorem 2 in [5]: for the noise vector κ,
whose L2 norm is distributed according to the Gamma distribution Γ(p,∆), we
have that with probability at least 1-α, ∥κ∥2 ≤ p∆ln( pα ). Therefore, PSGD follows

(
2p ln(p/α)kTLη

nϵ ,α)-deviation. □
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We then identify the deviation property of DPSGD under a strong convex-
ity and continuity assumption on loss functions. The pseudocodes of DPSGD
are shown in Algorithm 3.

Algorithm 3 Differentially Private Stochastic Gradient Descent [3, 22]

Input: Data set D = {d1 , · · · , dn}, loss function: ℓ(θ; di) with L2 -Lipschitz
constant L, privacy parameters: (ϵ, δ), number of iterations: T , batch size:
k , learning rate function: η : [T ]→R.

1: σ2 ← 16L2Tlog 1
δ

n2 ϵ2

2: θ1 = 0p

3: for t = 1 to T − 1 do
4: s1 , · · · , sk ← Sample k samples uniformly with replacement from D
5: bt ∼ N (0 , σ2 Ip×p)

6: θt+1 = θt − η(t)[1k
∑k

i=1 ∇ℓ(θ; si) + bt ]
7: end for
8: Output θT

Proof of Lemma 3. When applying DPSGD to optimize a ∆-strongly convex
and L2 -Lipchitz continuous loss function, if we set learning rate as

1
∆t , DPSGD

follows (4(L
2+pσ2)

∆2Tα ,α)-deviation.

Proof Let Gt as the gradient at iteration t , according to Theorem 2.4 of [22],

E[∥Gt∥22] ≤ L2 + pσ2

Then according to Lemma 1 of [44],

E[∥θt − θ∗∥2] ≤
4(L2+pσ2)

∆2t

Finally, according to Markov inequality,

Pr(
∥∥θpriv − θ∗

∥∥
2
≤ 4(L2+pσ2)

∆2Tα
) ≥ 1− α

□

The deviation properties of AMP, PSGD and DPSGD show that λ is
inversely propertional to α. Therefore, they deviate private hyperplane from
the original hyperplane little with high probability.

For convenience, we discuss the situation where yi= +1 here (the result
can be generalized to the situation where yi= -1). By the definition of the loss
function of LR, when a data sample x⃗i is correctly classified (i.e., θT x⃗i > 0), a
larger margin of x⃗i implies a smaller value of loss function. Conversely, when x⃗i

is wrongly classified (i.e., θT x⃗i < 0), a larger margin of x⃗i implies a larger value
of loss function. The following analysis is the same as that of Linear SVM.
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DataSet #Sample Sensitive Attribute Positive Label
German 1,000 Gender Good Credit Risk
Student 649 Gender Course Grade Higher than 10
Arrhythmia 452 Gender No Cardiac Arrhythmia

Table 6: Overview of supplementary datasets.
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Fig. 10: TPR gaps of non-private and differentially private SVM models.
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dim=390,std=0.3

Fig. 11: TPR gaps of non-private and differentially private Kernel SVM mod-
els, where dim and std are the parameters of kernel functions approximation
method.

B Empirical Results of the Rest Three Datasets

We train Linear SVM, Kernal SVM and LR models on German, Student,

Arrhythmia datasets under the same setting with that of Section 4. The test
results are shown in Figure 10, Figure 11 and Figure 12. Even though with
large variances, from the average results, we can find that when a significant
TPR gap exists in the non-private model, the private models will have larger
TPR gaps. On the other hand, when the TPR gaps of non-private models
are negligible, the private models will have similar, even smaller, TPR gaps
with the non-private models. We then explain why the TPR gaps of margin
classifiers trained on these three datasets have such large variances.
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Fig. 12: TPR gaps of non-private and differentially private LR models.

The overview of German, Student, Arrhythmia datasets is shown in
Table 6. The sizes of these three datasets are all less than 1,000. Consequently,
the sizes of their testing datasets are less than or equal to 200. Even though
labels are balanced distributed and different groups have the same number of
data samples, the number of ‘positive’ samples of each group in testing datasets
is less than or equal to 50. Therefore, the inversion of one data sample’s predic-
tion changes the TPR of the corresponding group by at least 2%. As a result,
the test results of these datasets are greatly impacted by the randomness of
noise sampling, and all have large variances.
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